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Spin-orbit effects on electron-electron interaction are studied theoretically. The corrections to the Coulomb
interaction of quantum well electrons induced by the spin-orbit coupling are derived. The developed theory is
applied to calculate the energy spectrum fine structure of an electron pair triplet states localized in small lateral
disk-shaped quantum dots. We show that the spin degeneracy of a triplet state is completely lifted in aniso-
tropic quantum dots. Isotropic quantum dots also demonstrate the peculiar fine structure of triplet states caused
by the spin-orbit interaction.
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I. INTRODUCTION

Spin-dependent phenomena in semiconductors are ac-
tively studied nowadays.1 Quantum dots demonstrate a rich
variety of promising properties, among those are long spin-
relaxation times of single electrons or holes and fast spin
dynamics of electron-hole complexes.2,3 Spin effects are usu-
ally related with the fine structure of energy spectrum of
charge carriers and their complexes. Thus, understanding the
spin-dependent fine structure of electronic states is of high
importance.4

Due to the time-reversal symmetry the single electron
states in quantum dots are spin degenerate and form Kramers
doublets. To the contrary, the localized states of an electron-
hole pair �zero dimensional excitons� are characterized by an
integer value of the total spin and demonstrate diverse fine
structure caused by the short- and long-range exchange in-
teractions between an electron and a hole.5,6 Such fine struc-
ture is extensively studied theoretically and experimentally;
see Ref. 4 and references therein. Recently, an increasing
interest is attracted by two-electron complexes in single-
quantum dots or in quantum dot molecules which are probed
by the photoluminescence spectroscopy.7–9 Two electron
states may serve as final states in the processes of the radia-
tive recombination in photoexcited doubly charged quantum
dots.

The ground state of a pair of electrons is a spin singlet due
to the Pauli principle. In the absence of the spin-orbit inter-
action, the excited triplet states are degenerate as well. An
interference of the spin-orbit and Coulomb interactions can,
in principle, lift this degeneracy.

We demonstrate here that this is exactly the case: in an-
isotropic quantum dots the triplet states of electron pairs split
into three fine sublevels, one of which corresponds to zero
projection of the total spin on the growth axis and two others
correspond to linear combinations of the states with total
spin projections being �1 similar to those of localized exci-
tons.

The microscopic origin of the two-electron energy spec-
trum fine structure is the spin-orbit interaction. At first, it

results in the wave-vector-dependent splitting of the free-
electron energy spectrum. The effect of conduction-band
spin splitting caused by the absence of an inversion center in
the system on the exchange interaction of localized electrons
has been analyzed in Refs. 10 and 11; see also Ref. 12. It was
demonstrated that the spin degeneracy of the triplet two-
electron states is not removed up to a high �fourth� order in
the conduction-band splitting.12

However, the spin-orbit interaction can manifest itself not
only in the splitting of electronic dispersion but also in the
modification of electron scattering.13 A possibility of the spin
flip at electron-electron or hole-hole collision has been dis-
cussed in Refs. 14–16. The effect of the spin-orbit correc-
tions to the Coulomb interaction on the asymmetric ex-
change interaction of electrons was discussed in Ref. 16. The
fine structure of a triplet state of localized electron pair in a
quantum dot due to the spin-orbit induced corrections to the
Coulomb interaction has not been addressed yet to the best
of our knowledge. The present paper aims to fill this appar-
ent gap.

In the present paper we derive within the framework of
Kane model the spin-orbit coupling induced corrections to
the Coulomb interaction between two electrons. The devel-
oped formalism is applied to calculate the fine structure of
the triplet states of a two-electron complex localized in a
quantum disk. The splitting of a triplet state is obtained in the
second order in the spin-orbit interaction and in the first or-
der in the Coulomb repulsion. We analyze the effects of disk
geometry on the fine structure of a pair of electrons.

II. SPIN-ORBIT TERMS IN ELECTRON-ELECTRON
INTERACTION

Spin-orbit interaction in semiconductors is largely deter-
mined by the spin-orbit splitting of the valence band. Its
effect on the conduction-band states can be described by k ·p
admixture of the valence-band states. Our ultimate goal is to
obtain the fine structure of a two-electron complex in a quan-
tum disk �lateral quantum dot�, i.e., in the system where the
quantization along the growth axis is much stronger as com-
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pared with the lateral quantization. To do so, we first derive
spin-orbit interaction induced corrections to the Coulomb po-
tential of quantum well electrons interaction and second we
apply the obtained effective interaction to determine the en-
ergy spectrum fine structure of two electrons localized in the
disk.

The direct band III-V semiconductor structure is consid-
ered. We use the eight-band Kane model in order to describe
the spin-orbit contributions to the electron-electron interac-
tion. This model disregards an absence of an inversion center
in the bulk material. The effects of bulk inversion asymmetry
on electron-electron interaction require a separate study. As
we see below, in anisotropic quantum disks the triplet state
degeneracy is completely lifted therefore bulk inversion
asymmetry may lead only to the quantitative modifications
of the spectrum.

As a starting point it is convenient to represent a free-
electron wave function in a quantum well grown along
z � �001� axis in the fist order of k ·p interaction as4,17,18

�s,k��,z� = eik��Sr + iRr · �AK̂ − iB�̂ � K̂����z���s� . �1�

Here r= �� ,z� is the electron position vector, K̂= �k ,
−i� /�z� is the wave vector of the electron, ��z� is the smooth
envelope describing its size quantization along z axis, �̂ is
the electron-spin operator, Sr and Rr= �Xr ,Yr ,Zr� are s-type
and p-type Bloch functions taken at the � point, and ��s� is a
spinor. Constants A and B are equal to

A =
i�pcv

3m0
� 2

Eg
+

1

Eg + �
	 ,

B = −
i�pcv

3m0
� 1

Eg
−

1

Eg + �
	 , �2�

where Eg and � are the band gaps �6−�8 and �8−�7, re-
spectively, pcv is the interband momentum matrix element,
and m0 is the free-electron mass. Normalization constant in
Eq. �1� is omitted. Equation �1� is valid provided that the
electron energy referred to the conduction-band bottom is
much smaller as compared to Eg and �.

The Hamiltonian describing Coulomb scattering of two
electrons from the states �ks ,k�s�� to the states �ps1 ,p�s1��
taking into account their indistinguishability and allowing for
the spin-orbit interaction is formed from the matrix elements
of bare Coulomb potential

V�r1 − r2� =
e2

	�r1 − r2�

taken between the Slater determinants composed of multi-
component functions Eq. �1�. Here e is the elementary charge
and 	 is the static dielectric constant. We consider the spin-
orbit interaction as a small perturbation, therefore it is
enough to calculate the matrix element of V�r1−r2� for non-
symmetrized wave function and antisymmetrize it after-
wards. The nonsymmetrized matrix element reads

M�ks,k�s� → ps1,p�s1�� =
2
e2

�	q
�k+k�,p+p�
�s1

�s1�
��F22

00�q� + ���̂�1� � �p + k��zF12
10�q� + ��̂�2� � �p� + k���zF21

01�q�

+ iF22
00�q���p � k��̂�1� + �p� � k���̂�2��� + 2���̂�1� � �p + k��z��̂�2� � �p� + k���zF11

11�q�

+ i��̂�1� � �p + k��z�p� � k��z�̂z
�2�F12

10�q� + i�p � k�z�̂z
�1���̂�2� � �p� + k���zF21

01�q�

− ��p � k��̂�1����p� � k���̂�2��F22
00�q�����s�s�� . �3�

Here � is the normalization area, q=p−k is the transferred
wave vector, the parameter =2AB+B2 characterizes the
strength of the spin-orbit interaction, �̂�1� and �̂�2� are the
spin operators of the first and second electrons �acting on
spinors ��s�, ��s1

� and on ��s��, ��s1�
�, respectively�. Form fac-

tors Fij
kl�q� depend on the shape of the electron envelope in

the growth direction,

Fij
kl�q� = dz1dz2e−q�z1−z2����z1��i���z2�� j����z1��k����z2��l.

In Eq. �3� we have neglected the valence-band admixture
induced corrections to the spin-independent part of Coulomb
matrix element along with quadratic in wave-vector correc-
tions to the linear in  terms. Terms linear in wave vectors in
Eq. �3� �cf. �Ref. 16�� describe skew electron-electron scat-
tering and have the same form as structure-inversion asym-

metry induced electron impurity or electron phonon-
scattering terms; see Refs. 18 and 19 and references therein.
They may arise only in quantum wells with structure inver-
sion asymmetry. The terms linear in  and quadratic in the
wave vectors contain cross products of k, p, and of k�, p�,
and describe Mott effect at electron-electron scattering.14

Terms quadratic in  describe spin-spin interaction and are
responsible for the mutual spin flip of electrons. These terms
are of importance in determination of fine structure of a pair
of localized carriers.

III. FINE STRUCTURE OF A TWO-ELECTRON
COMPLEX

We consider a quantum dot embedded into a quantum
well. It is assumed that the quantum dot radius a or effective
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radii ax and ay along the main in-plane axes of the quantum
dot, x and y, exceed by far the quantum well width �i.e., the
dot height� d �see Fig. 1�a��. On the other hand, the lateral
size of the quantum dot is supposed to be small enough in
order to allow us to fix electron envelope functions and treat
Coulomb interaction between charge carriers �Eq. �3�� as a
small perturbation. Thus, the following energy hierarchy is
assumed: the largest energy scale is the size-quantization
along the z axis, then lateral size quantization, thereupon the
Coulomb interaction without spin-orbit terms and, finally, the
spin-orbit induced corrections to the electron-electron inter-
action.

The structure of orbital states is schematically shown in
Fig. 1�b�. The ground state of two electrons is a spin singlet
�with total spin equal to 0�, their orbital functions are the
same and belong to the lowest size-quantization level of the
disk �S states, described by single electron lateral envelope
S����. This state is denoted as SS-orbital state. The spin-orbit
interaction shifts slightly to the ground-state position, this
effect is ignored hereafter.

We focus on the lowest excited states, namely, those
formed of one electron in the ground state and another one in
the first-excited P-orbital state. There are two such states,
SPx and SPy �with node on y and x axes, respectively�, de-
scribed by the lateral envelope functions Px��� and Py���. In
axially symmetric disks these states are degenerate and they
can be split due to an anisotropy of the lateral potential. We
first consider the case of anisotropic disk where these states
are independent, and further, the case of axially symmetric
disk is discussed. In the absence of the spin-orbit interaction
each SPi state �i=x ,y� is split in spin singlet and triplet by
the electron-electron exchange interaction. Singlet states are
disregarded in what follows.

A. Symmetry arguments

Before presenting a microscopic theory let us analyze
symmetry restrictions on the fine structure of the triplet
states. Following the method of invariants we construct the
spin-dependent part of the electron-electron interaction

Hamiltonian for a given triplet state SPi �i=x or y� from the

operators of the total momentum 1, Ŝ� ��=x ,y ,z�. Time re-
versal symmetry implies that only quadratic combinations of

Ŝ� enter the spin Hamiltonian. In anisotropic disks with x

and y being the main axes Ŝx
2 and Ŝy

2 are invariant, therefore,
the effective Hamiltonian can be recast as

�̂ii = AiŜx
2 + BiŜy

2 − �Ai + Bi�Ŝz
2, �4�

where Ai and Bi are some constants. The term proportional

to Ŝz
2 is added in order to eliminate the total energy shift of

the triplet. Hence, a fine structure of each triplet orbital is
determined by two linearly-independent parameters.

In a general case of arbitrary Ai and Bi each orbital state
is split into three sublevels, according to the z projection of
the total spin, mz: the state with mz=0 and two states being
the combinations of mz= �1 states �see Fig. 2�. The latter
form “linearly polarized” combinations: �x�= ��+1�+ �
−1�� /�2 and �y�=−i��+1�− �−1�� /�2, similar to those of
heavy-hole exciton in an anisotropic quantum disk.4,5,20 Such
a fine structure is specific to the anisotropic quantum disks
where SPx and SPy orbitals are split in energy.

In isotropic quantum disks the orbitals SPx and SPy are
degenerate. The rotation by 
 /2 around z axis transforms
SPx state into SPy state. Therefore, they cannot be considered
separately and effective spin-dependent Hamiltonian con-

tains both diagonal in orbital states part, �̂ii and nondiagonal

parts, �̂ij �i� j�. The diagonal part is given by Eq. �4� with

FIG. 1. Panel �a�: axially symmetric and anisotropic quantum
disks �top view�. Panel �b�: schematic illustration of two-electron
orbital states in quantum disks. Energy gaps are shown not to scale.
The splitting of SP triplet state due to a possible lateral potential
anisotropy is shown. The singlet SP orbital state is also split by a
disk anisotropy in the same fashion �not shown�.

FIG. 2. Schematic illustration of the fine structure of triplet
states in an anisotropic quantum disk. SPx and SPy denote orbital
states �x��1 ,�2� and �y��1 ,�2� �Eq. �6��, respectively, being split
due to the lateral anisotropy. Here �0�, �x�, and �y� denote spin states
�i.e., those with the total spin z projection mz being 0 and two linear
combinations of mz= �1 states�. Subscripts x and y denote orbital
states.
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Ax=By and Ay =Bx. Nondiagonal in orbital indices contribu-
tions read as

�̂xy = �̂yx = �Ax − Bx��Ŝx, Ŝy�sym, �5�

where �Â , B̂�sym= �ÂB̂+ B̂Â� /2.
Schematic level structure is shown in Fig. 3. The states

can be classified in accordance to their total momentum �spin
and angular� z component Fz and form two nondegenerate
sublevels: 0L and 0U with Fz=0 and two twofold-degenerate
sublevels with Fz= �1 and �2. The fine structure of two-
electron complex in isotropic disks is analogous to that of
excited exciton states in isotropic quantum disks �cf. Ref.
20�.

B. Microscopic theory

Each triplet described by an antisymmetric orbital wave
function,

�i��1,�2� =
1
�2

�S��1�Pi��2� − S��2�Pi��1�� , �6�

is lower in energy as compared with the corresponding sin-
glet because the Coulomb interaction for this state is weaker
due to the smaller overlap of electron wave functions in the
triplet as compared with the singlet. The singlet-triplet split-
ting is of the order of e2 /	a and is much larger than the
fine-structure splittings of triplet state �to be calculated be-
low�. Therefore, one can neglect possible admixture of a sin-
glet state due to the spin-orbit interaction.

The effective Hamiltonian describing a fine structure of a
pair of carriers can be obtained by taking the matrix elements
of Eq. �3� in the basis of triplet SPi and SPj states. It turns
out that the direct contribution vanishes and the exchange
one can be written as

�̂ij = −
2
e22

�	
�

k,k�,p,p�

�k+k�,p+p�

�k − p�
S̃��p��P̃j

��p�S̃�k�P̃i�k�� ,

�F11
11�q���̂�1��p + k��z��̂�2��p� + k���z

− F22
00�q��p � k�z�p� � k��z�̂z

�1��̂z
�2��,

i, j = x or y . �7�

Here the Fourier transform of an envelope function, e.g., of
S���, is defined as

S̃�k� =
1

��
 e−ik�S���d� .

It is worth noting that Hamiltonian Eq. �7� does not describe
small spin-orbit induced corrections to the singlet-triplet
splitting of electron states in quantum dots. In contrast with
the exchange interaction of an electron and a hole in an ex-
citon which is screened by a high-frequency dielectric con-
stant; see Refs. 4, 5, and 20 and references therein, both
direct and exchange interaction of two electrons are screened
by the low-frequency dielectric constant because all involved
energies are small as compared with the band gap Eg.4,16,21

Anisotropic quantum disk. We assume that the quantum
disk anisotropy is small enough that the deformation of the
wave functions is negligible and SPx orbital transforms to
SPy orbital by a rotation by 
 /2. The energy splitting be-
tween these orbitals �, however, is supposed to exceed by far
the fine-structure splittings of each triplet. One can consider
SPx and SPy orbitals as independent but neglect the differ-
ences in their shapes a wide range of � values because the
interlevel splitting in the quantum disk �determined by the
confinement� is much larger than the fine-structure splittings
of each triplet state �determined by the spin-orbit interac-
tion�. One can check that in this case

Ax = By = −
2

3
��� + �zz�, Bx = Ay =

2

3
�2�� − �zz� , �8�

where we introduced new parameters �� and �zz describing
the splittings between linearly polarized states, and between
the state with mz=0 and one of the linearly polarized states,
respectively, in agreement with Fig. 2.

The calculation shows that for the parabolic quantum disk
where the electron pair states are described by Gaussian en-
velopes such as

S��� =
1

�2
a2
e−�2/4a2

, Px��� =
x

a
S���, Py��� =

y

a
S��� ,

where a is an effective disk radius and the constants �� and
�zz have the following form:

�� = − 2 3e2

8	da4 , �zz = − 2
�
e2

32	a5 . �9�

Here d is the height of the quantum disk and the infinite
barriers are assumed to describe quantization along z axis.
Interestingly, �� is parametrically larger than �zz, i.e., their
ratio �� /�zz�a /d�1 in quantum disks. Therefore, as it is
shown in Fig. 2 the splitting between mz=0 and one of lin-

FIG. 3. Schematic illustration of the fine structure of triplet
states in an isotropic quantum disk. SPx and SPy denote degenerate
orbital states �x��1 ,�2� and �x��1 ,�2� �Eq. �6��, respectively. �0�,
�+1�, �−1�, �x�, and �y� denote spin states. Subscripts x and y denote
orbital states. 0L, 0U, �1, and �2 label total momentum z
component.
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early polarized states is substantially smaller than the energy
distance to another one.

Isotropic quantum disk. In quantum disks with the axially
symmetric or square-shaped lateral potential the two orbital
states SPx and SPy cannot be considered as independent ones
and the nondiagonal in orbital indices matrix elements �i
� j� of the �̂ij spin Hamiltonian �see Eq. �5�� should be taken
into account. In agreement with the symmetry of the system
there are two doubly degenerate states with the total momen-
tum z components Fz= �2 and Fz= �1 and two nondegen-
erate states with the total momentum component being 0 �see
Fig. 3�.

The transition between the cases of isotropic and aniso-
tropic quantum disks takes place where the splitting between
SPx and SPy orbitals � becomes comparable with ��. The
level arrangement in the case of arbitrary quantum disk an-
isotropy �provided � is much smaller than the distance be-
tween SS and SP levels so that the deformation of the wave
functions can be neglected� is shown in Fig. 4.

IV. DISCUSSION AND CONCLUSION

The ratios of the fine-structure splitting constants ��, �zz
and the Coulomb exchange interaction energy of an electron
pair in the SP orbital state are the important dimensionless
parameters which determine the relative magnitudes of the
triplet fine-structure splittings. The Coulomb exchange inter-
action energy equals to the half of the singlet-triplet splitting
and reads

Ue =
e2

	
 d�1d�2

��1 − �2�
S��1�Px��1�Px��2�S��2� =

�
e2

8	a
.

Therefore

���

Ue
� =

32

�
da3
, ��zz

Ue
� =

2

4a4 . �10�

The parameters are ���5 Å2 �GaAs�, 30 Å2 �GaSb�,
110 Å2 �InAs�, and 500 Å2 �InSb�.22 The splittings are
therefore quite small in GaAs-based quantum dots but can be
strongly enhanced in narrow-band semiconductor materials.

These splittings of the triplet state can be observed in
polarization-resolved spectroscopy of the doubly charged
quantum dot where, after the recombination of an additional
electron-hole pair injected into the dot, a pair of electrons
occupying S and P orbitals remains.

In agreement with the symmetry considerations the fine
structure of triplet states arises even in the centrosymmetric
systems. An effective point symmetry of isotropic and aniso-
tropic disks considered here D4h and D2h, respectively, as
compared with D2d and C2v point groups describing real
III-V semiconductor quantum dots. However, an absence of
an inversion center in the symmetry group of either bulk
material or of heteropotential does not change qualitatively
the fine structure of triplet states.

The case of noncentrosymmetric system has been ana-
lyzed in a number of works; see Refs. 10–12. In those papers
the conduction-band spin splitting due to bulk or structure
inversion asymmetry was taken into account but the spin-
orbit corrections to the electron-electron interaction were dis-
regarded. It was demonstrated that fine structure of the triplet
state is absent in the first order in conduction-band spin split-
tings. In that case, effectively, the exchange interaction of
electrons remains the same but the spins of carriers are ro-
tated due to the effective magnetic field arising from the spin
splitting. The complete removal of spin degeneracy due to
the conduction-band spin splitting was demonstrated in the
fourth order in the spin-orbit coupling12 while the present
mechanism gives rise to the fine structure in the second order
in spin-orbit coupling.

In conclusion, we have derived the spin-orbit terms in the
effective matrix element of electron-electron interaction in
quantum wells. We have addressed theoretically the fine
structure of two-electron complexes localized in small lateral
quantum dots. We have shown that the spin degeneracy of
the two-electron triplet states is completely lifted in aniso-
tropic quantum dots. In quantum disks with isotropic lateral
potential the two-electron states are split in accordance with
the total angular-momentum projection. The fine-structure
splittings are calculated for the quantum disks with the para-
bolic lateral potential.

We note that the exact values of the triplet state splittings
depend strongly on quantum disk parameters and on inter-
face properties. The extension of the present theory to the
realistic quantum dot systems �including double dots, verti-
cally coupled quantum dots, and semiconductor nanocrystals
of an arbitrary shape� may be a possible development of this
study. Another steps to continue this investigation are: �i�
take into account an absence of an inversion center in bulk
material and analyze an interference of bulk and structure
asymmetry in the triplet state fine structure and �ii� study an
interplay of conduction-band spin splitting and spin-orbit
terms in electron-electron interaction in the formation of fine
structure of a two-electron state in a quantum dot.

ACKNOWLEDGMENTS

We are grateful to E. L. Ivchenko and K. V. Kavokin for
useful discussions. The financial support of RFBR, Pro-
grammes of RAS and the “Dynasty” Foundation–ICFPM is
acknowledged.

0 5 10 15 20 25
-15

-10

-5

0

5

10

15
|y〉

y

|x〉
y

|0〉
y

|0〉
x

|x〉
x

±1

±2

0U

E
ne

rg
y

(u
ni

ts
of

|δ
zz
|)

SP
y
-SP

x
splitting (ε/|δ

zz
|)

0L

|y〉
x

FIG. 4. �Color online�. Fine structure of SP triplet states as a
function of quantum disk anisotropy. Levels are denoted in the
same way as in Figs. 2 and 3. The case of �� /�zz=3 is shown.

SPIN-ORBIT EFFECT ON ELECTRON-ELECTRON… PHYSICAL REVIEW B 79, 195305 �2009�

195305-5



1 M. I. Dyakonov, in Spin Physics in Semiconductors, Springer
Series in Solid State Sciences Vol. 157 �Springer, Berlin, 2008�.

2 T. Flissikowski, A. Hundt, M. Lowisch, M. Rabe, and F. Hen-
neberger, Phys. Rev. Lett. 86, 3172 �2001�.

3 M. Ikezawa, B. Pal, Y. Masumoto, I. V. Ignatiev, S. Y. Verbin,
and I. Y. Gerlovin, Phys. Rev. B 72, 153302 �2005�.

4 E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nano-
structures �Alpha Science, Harrow, UK, 2005�.

5 S. V. Gupalov, E. L. Ivchenko, and A. V. Kavokin, JETP 86, 388
�1998�.

6 M. Z. Maialle, Phys. Rev. B 61, 10877 �2000�.
7 I. A. Akimov, K. V. Kavokin, A. Hundt, and F. Henneberger,

Phys. Rev. B 71, 075326 �2005�.
8 E. A. Chekhovich, A. S. Brichkin, A. V. Chernenko, V. D. Ku-

lakovskii, I. V. Sedova, S. V. Sorokin, and S. V. Ivanov, Phys.
Rev. B 76, 165305 �2007�.

9 A. S. Brichkin, A. V. Chernenko, E. A. Chekhovich, P. S. Dor-
ozhkin, V. D. Kulakovskii, S. V. Ivanov, and A. A. Toropov,
JETP 105, 379 �2007�.

10 K. V. Kavokin, Phys. Rev. B 64, 075305 �2001�.
11 K. V. Kavokin, Phys. Rev. B 69, 075302 �2004�.
12 S. Gangadharaiah, J. Sun, and O. A. Starykh, Phys. Rev. Lett.

100, 156402 �2008�.
13 V. N. Abakumov and I. N. Yassievich, Sov. Phys. JETP 34, 1375

�1972�.
14 P. Boguslawski, Solid State Commun. 33, 389 �1980�.
15 P. Schneider, J. Kainz, S. D. Ganichev, S. N. Danilov, U.

Rossler, W. Wegscheider, D. Weiss, W. Prettl, V. V. Bel’kov, M.
M. Glazov, L. E. Golub, and D. Schuh, J. Appl. Phys. 96, 420
�2004�.

16 S. C. Badescu, Y. B. Lyanda-Geller, and T. L. Reinecke, Phys.
Rev. B 72, 161304�R� �2005�.

17 R. A. Suris, Sov. Phys. Semicond. 20, 866 �1986�.
18 N. S. Averkiev, L. E. Golub, and M. Willander, J. Phys.: Con-

dens. Matter 14, R271 �2002�.
19 S. A. Tarasenko and E. L. Ivchenko, JETP Lett. 81, 231 �2005�.
20 M. M. Glazov, E. L. Ivchenko, R. von Baltz, and E. G. Tsitsish-

vili, Int. J. Nanosci. 6, 265 �2007�.
21 V. F. Gantmakher and Y. B. Levinson, Carrier Scattering in Met-

als and Semiconductors �North-Holland, Amsterdam, 1987�; G.
F. Giuliani and J. J. Quinn, Phys. Rev. B 26, 4421 �1982�; M.
M. Glazov and E. L. Ivchenko, JETP 99, 1279 �2004�.

22 E. A. de Andrada e Silva, G. C. La Rocca, and F. Bassani, Phys.
Rev. B 55, 16293 �1997�.

M. M. GLAZOV AND V. D. KULAKOVSKII PHYSICAL REVIEW B 79, 195305 �2009�

195305-6


